top of page

Свойства бутылки Клейна

Сравнительная характеристика свойств поверхностей: 

бутылки Клейна и листа Мёбиуса

Свойства бутылки Клейна

Сравнительная характеристика свойств поверхностей: 

бутылки Клейна и листа Мёбиуса

 

1. Односторонность

Лист Мёбиуса

Возьмем карандаш и начнем закрашивать ленту в каком-нибудь направлении. Вскоре мы вернемся в то место, откуда начали. Закрашенной оказалась вся лента целиком! А ведь мы ее не переворачивали, чтобы закрасить с другой стороны. Да и не смогли бы перевернуть, даже если бы очень захотели. Потому как поверхность ленты Мебиуса - односторонняя

Бутылка Клейна

Бутылка Клейна — определенная неориентируемая поверхность первого рода, т.е. поверхность, у которой нет различия между внутренней и внешней сторонами. Это подчёркивает её односторонность.

2. Непрерывность

Лист Мёбиуса

На листе Мебиуса любая точка может быть соединена с любой другой точкой и при этом не придётся переходить через край «ленты». Разрывов нет – непрерывность полная.

Бутылка Клейна

В отличие от обыкновенного стакана, у этого объекта нет «края», где бы поверхность резко заканчивалась. В отличие от воздушного шара, можно пройти путь изнутри наружу, не пересекая поверхность (то есть на самом деле у этого объекта нет «внутри» и нет «снаружи»), то есть присутствует свойство непрерывности.

3. Связность

Лист Мёбиуса

Яблоко от удара разлетится на две части. Но вот чтобы располовинить кольцо, нужно уже два разреза. И два раза придётся резать бублик, если вы хотите угостить им двух друзей. Поэтому любой тополог скажет вам, что квадрат– односвязен, кольцо и оправа от очков – друсвязны, а всяческие решётки, диски с отверстиями и подобные сложные фигуры – многосвязны. Ну, а лист Мебиуса? Конечно двусвязен, т.к. если разрезать его вдоль, он превратится не в два отдельных кольца, а в одну целую ленту. Если перекрутить ленту на два оборота, то лист становится односвязным. Три оборота – связность снова равна двум. Связность принято оценивать числом Бетти, названным так в честь известного итальянского математика и физика.

Бутылка Клейна

Связанность этой поверхности совпадает со связанностью тора, так как, разрезав бутылку Клейна по любой окружности малого диаметра, мы получим цилиндр переменного радиуса; далее можно делать разрез вдоль продольных линий цилиндра; отсюда и берется величина σ = 3. Но если тор имеет внутреннюю область, отделенную от внешней стенками тора, т.е. ориентированную поверхность, то бутылка Клейна этим свойством не обладает.

4. Ориентированность

Лист Мёбиуса

Ориентированность - это то, чего нет у листа Мебиуса! Вообразите, что в нём заключён целый плоский мир, где есть только два измерения, а его обитатели – несимметричные рожицы, не имеющие, как и сам лист никакой толщины. Если эти несчастные создания пропутешествуют по всем изгибам листа Мебиуса и вернутся в начальную точку, то в изумлении обнаружат, что превратились в своё собственное зеркальное отображение. Конечно, всё это случится, только если они живут в листе, а не на нём. 

Бутылка Клейна

Конечно, можно было подробно рассказать, что это такое. Но лучше дать определение «от противного»: это то, чего нет у бутылки Клейна! Вообразите, что в ней заключён целый плоский мир, где есть только два измерения, а его обитатели – не симметричные рожицы, не имеющие, как и сама бутылка никакой толщины. Если эти несчастные создания пропутешествуют по всем изгибам бутылки и вернутся в родные пенаты, то в изумлении обнаружат, что превратились в своё собственное зеркальное отображение. Конечно, всё что случится только, если они живут в бутылке, а не на ней. 

5. Хроматический номер

Лист Мёбиуса

Он равен максимальному числу областей, которые можно нарисовать на поверхности так, чтобы каждая из них имела общую границу со всеми другими. Если каждую такую область выкрасить по-разному, то любой цвет должен соседствовать с любым другим. Хроматический номер листа Мебиуса равен 6.

Бутылка Клейна

Хроматический номер бутылки Клейна – 6.

Выводы:

Все свойства двух поверхностей абсолютно идентичны. Значит, бутылка Клейна, подобно листу Мёбиуса является топологическим объектом. Следовательно, бутылка Клейна обладает топологическими свойствами.   

 

img2.jpg
bottom of page